Publication
ITherm 2008
Conference paper

Forced convective interlayer cooling in vertically integrated packages

View publication

Abstract

The heat removal capability of area-interconnect-compatible interlayer cooling in vertically integrated, high-performance chip stacks was characterized with de-ionized water as coolant. Correlation-based predictions and computational fluid dynamic modeling of cross-flow heat-removal structures show that the coolant temperature increase due to sensible heat absorption limits the cooling performance at hydraulic diameters ≤ 200 μm. An experimental investigation with uniform and double-side heat flux at Reynolds numbers ≤ 1000 and heat transfer areas of 1 cm2 was carried out to identify the most efficient interlayer heat-removal structure. Parallel plate, microchannel, pin fin, and their combinations with pins using in-line and staggered configurations with round and drop-like shapes at pitches ranging from 50 to 200 μ m and fluid structure heights of 100 to 200 μm were tested. A hydrodynamic flow regime transition responsible for a local junction temperature minimum was observed for pin fin inline structures. The experimental data was extrapolated to predict maximal heat flux in chip stacks with a 4-cm2 heat transfer area. The performance of interlayer cooling strongly depends on this parameter, and drops from >200 W/cm2 at 1 cm2 and >50 μm interconnect pitch to <100 W/cm2 at 4 cm2. ©2008 IEEE.

Date

Publication

ITherm 2008