About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACM TIST
Paper
Folksonomy-based term extraction for word cloud generation
Abstract
In this work we study the task of term extraction for word cloud generation in sparsely tagged domains, in which manual tags are scarce. We present a folksonomy-based term extraction method, called tag-boost, which boosts terms that are frequently used by the public to tag content. Our experiments with tag-boost based term extraction over different domains demonstrate tremendous improvement in word cloud quality, as reflected by the agreement between manual tags of the testing items and the cloud's terms extracted from the items' content. Moreover, our results demonstrate the high robustness of this approach, as compared to alternative cloud generation methods that exhibit a high sensitivity to data sparseness. Additionally, we show that tag-boost can be effectively applied even in nontagged domains, by using an external rich folksonomy borrowed from a well-tagged domain. © 2012 ACM.