About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGIR 2004
Conference paper
Focused named entity recognition using machine learning
Abstract
In this paper we study the problem of finding most topical named entities among all entities in a document, which we refer to as focused named entity recognition. We show that these focused named entities are useful for many natural language processing applications, such as document summarization, search result ranking, and entity detection and tracking. We propose a statistical model for focused named entity recognition by converting it into a classification problem. We then study the impact of various linguistic features and compare a number of classification algorithms. From experiments on an annotated Chinese news corpus, we demonstrate that the proposed method can achieve near human-level accuracy.