About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
The Journal of Chemical Physics
Paper
Finite-temperature characterization of ferrocene from first-principles molecular dynamics simulations
Abstract
A first-principles molecular dynamics calculation of ferrocene [Fe(C 5H5)2] at 300 K, based on the local density approximation, is presented. Kohn-Sham equations and forces on the atoms are obtained using the projector augmented wave technique. Frequencies and eigenmodes are derived by fitting a system of harmonic oscillators to the molecular dynamics trajectory. Frequency shifts for deuterated ferrocene [Fe(C5D5)2, ferrocene-d10] and the corresponding eigenvectors are obtained by diagonalizing the dynamical matrix after renormalizing it according to the changed masses. Most experimental and theoretical frequencies agree to about 2.5% (or 20 wave numbers), with the exception of six modes for which a new assignment is proposed. © 1994 American Institute of Physics.