About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Computer Networks
Paper
Finding the K highest-ranked answers in a distributed network
Abstract
In this paper, we present an algorithm for finding the k highest-ranked (or Top-k) answers in a distributed network. A Top-K query returns the subset of most relevant answers, in place of all answers, for two reasons: (i) to minimize the cost metric that is associated with the retrieval of all answers; and (ii) to improve the recall and the precision of the answer-set, such that the user is not overwhelmed with irrelevant results. Our study focuses on multi-hop distributed networks in which the data is accessible by traversing a network of nodes. Such a setting captures very well the computation framework of emerging Sensor Networks, Peer-to-Peer Networks and Vehicular Networks. We present the Threshold Join Algorithm (TJA), an efficient algorithm that utilizes a non-uniform threshold on the queried attribute in order to minimize the transfer of data when a query is executed. Additionally, TJA resolves queries in the network rather than in a centralized fashion which further minimizes the consumption of bandwidth and delay. We performed an extensive experimental evaluation of our algorithm using a real testbed of 75 workstations along with a trace-driven experimental methodology. Our results indicate that TJA requires an order of magnitude less communication than the state-of-the-art, scales well with respect to the parameter k and the network topology. © 2009 Elsevier B.V. All rights reserved.