About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SENSORS 2022
Conference paper
Feature importance methods unveiling the cross-sensitive response of an integrated sensor array to quantify major cations in drinking water
Abstract
A proof-of-concept system comprising a miniaturized sensor array, feature extraction and machine learning pipeline was evaluated for the direct quantification of the concentrations of three major cations, Ca2+, Mg2+, and Na+, in drinking water. Feature importance methods were applied to discover dependencies between the transient potentiometric responses of sensing materials and the cation concentrations. The proposed framework supports design of cross-sensitive sensor arrays to accelerate water testing, providing a complementary approach to traditional chemical analysis for monitoring water quality.