About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICSLP 2006
Conference paper
Feature and model space speaker adaptation with full covariance Gaussians
Abstract
Full covariance models can give better results for speech recognition than diagonal models, yet they introduce complications for standard speaker adaptation techniques such as MLLR and fMLLR. Here we introduce efficient update methods to train adaptation matrices for the full covariance case. We also experiment with a simplified technique in which we pretend that the full covariance Gaussians are diagonal and obtain adaptation matrices under that assumption. We show that this approximate method works almost as well as the exact method.