About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Materials Chemistry
Paper
Facile chemical rearrangement for photopatterning of POSS derivatives
Abstract
We report a useful acid-catalyzed crosslinking reaction which enables the direct photopatterning of POSS derivatives to form robust nanoporous matrices. Octakis(dimethylacetoxyethyl siloxy) POSS and octakis(dimethylacetoxypropyl siloxy) POSS were synthesized from commercially available octahydrido-POSS. Both the acetoxyethyl- and acetoxypropyl functionalities were observed to undergo thermal rearrangement at temperatures above 300 °C to form Si-O-Si bonds, thus forming a crosslinked POSS network. Interestingly, the same functionalities were also acid sensitive, and the chemical rearrangement occurred at much lower temperatures. Thus, patterned nanoporous features were lithographically generated when a photoacid generator (PAG) was used as a photosensitive agent to initiate the crosslinking of the POSS derivatives. The dielectric properties were evaluated for the crosslinked POSS films, which had a dielectric constant ∼2.3 and an elastic modulus of ∼2.0 GPa. These materials hold great promise for developing a photopatternable low-k material which eliminates the need for sacrificial layers when patterning low-k dielectric films. © 2011 The Royal Society of Chemistry.