About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Micro and Nano Engineering
Paper
Fabrication of a hybrid device for the integration of light-triggered proton pumps
Abstract
Biological ion pumps, such as bacteriorhodopsin (bR), utilize photons to move ions against concentration gradients, offering energy harvesting and spatiotemporal control of chemical gradients. This capability goes far beyond the capabilities of today's synthetic devices, suggesting a hybrid approach to embed bRs in synthetic devices in order to direct the proton flow towards useful system applications. In this study, a hybrid silicon-based nanochannel network with integrated purple membranes (PM) containing bR was fabricated. The fabrication method combines thermal scanning probe lithography, etching techniques, atomic layer deposition, plasma-enhanced chemical vapor deposition, and photolithography to create devices with buried nanochannels on silicon substrates. PM patches were deposited onto specified sites by a tunable nanofluidic confinement apparatus. The resulting device holds the potential for locally controlling directed ion transport in micrometer scale devices, a first step towards applications, such as locally affected proton catalyzed chemical reaction networks. Furthermore, this fabrication strategy, employing a maskless overlay, is a tool for constructing intricate nanofluidic network designs which are mechanically robust and straightforward to fabricate.