About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nanoscale and Microscale Thermophysical Engineering
Paper
Experimental Iinvestigation of scaling effect on thermal transport in nanoscale hot spots
Abstract
This article reports experimental investigation of the scaling effect on thermal transport in platinum nanoheaters deposited on a single crystalline silicon substrate. The size dependency of the thermal resistances of nanoheaters with dimensions from 5 μm down to 100 nm was experimentally obtained. Additional joule heating and electrical resistance thermometry in heater/sensor pairs of various dimensions and spacing (100 to 400 nm) were carried out in order to study the temperature distribution in the vicinity of these nanoheaters. The results of these two sets of measurements confirm that the thermal resistances of smaller nanoheaters are dominated by the interface resistance between the platinum and silicon substrate. Furthermore, analytical solutions of the BTE around a hot spot were used to evaluate and examine the significance of the localized heating or subcontinuum transport around a hot spot.