Publication
GlobalSIP 2019
Conference paper

Evaluation of bias in sensitive personal information used to train financial models

View publication

Abstract

Bias in data can have unintended consequences which propagate to the design, development, and deployment of machine learning models. In the financial services sector, this can result in discrimination from certain financial instruments and services. At the same time, data privacy is of paramount importance, and recent data breaches have seen reputational damage for large institutions. Presented in this paper is a trusted model-lifecycle management platform that attempts to ensure consumer data protection, anonymization, and fairness. Specifically, we examine how datasets can be reproduced using deep learning techniques to effectively retain important statistical features in datasets whilst simultaneously protecting data privacy and enabling safe and secure sharing of sensitive personal information beyond the current state-of-practice.

Date

01 Nov 2019

Publication

GlobalSIP 2019

Authors

Share