About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Applied
Paper
Error bounds for variational quantum time evolution
Abstract
Variational quantum time evolution allows us to simulate the time dynamics of quantum systems with near-term compatible quantum circuits. Due to the variational nature of this method the accuracy of the simulation is a priori unknown. We derive a posteriori global phase agnostic error bounds for the state simulation accuracy with variational quantum time evolution that improve the tightness of fidelity estimates over existing a posteriori error bounds. These analysis tools are practically crucial for assessing the quality of the simulation and making informed choices about simulation hyperparameters. The efficient, a posteriori evaluation of the bounds can be tightly integrated with the variational time simulation and, hence, results in a minor resource overhead, which is governed by the system's energy variance. The performance of the error bounds is demonstrated on numerical examples.