About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry C
Paper
Epitaxial growth of large pentacene crystals on Si(001) surfaces functionalized with molecular monolayers
Abstract
The nucleation and growth of pentacene thin films are controlled largely by the energies associated with the interfaces. We have used low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) to investigate the nucleation and growth of pentacene thin films on Si(001) surfaces modified with two different molecular monolayers. Clean Si(001)-(2 × 1) surfaces were modified with either 1,5-cyclooctadiene or 1-dodecene prior to pentacene growth to study the effects of exposed n bonds at the interface, orientation of those n bonds relative to each other, and rigidity of the molecular layer on pentacene nucleation, growth, and crystalline orientation. Both molecular monolayers weaken the substrate-pentacene interaction sufficiently to allow for low pentacene nucleation density and good pentacene diffusion, leading to the growth of pentacene grains as large as 100 μm. Pentacene grows epitaxially on both functionalized surfaces, adopting an orthorhombic unit cell that follows the orientation of the underlying Si surface reconstruction. Our results show that in addition to improving the ultimate size of pentacene crystals, molecular monolayers are able to impose the substrate orientation on pentacene nuclei and thereby control the crystalline orientation of the thin film. © 2007 American Chemical Society.