About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Electronic structure, spectra, and properties of 4:2-coordinated materials. I. Crystalline and amorphous SiO2 and GeO2
Abstract
A two-parameter tight-binding theory of the electronic structure of 4:2-coordinated materials is proposed. The parameters, a covalent and a polar energy, are fitted to the optical absorption spectra. The valence energy bands and density of states are calculated. In terms of these a consistent interpretation of all the observed photoemission and x-ray-emission spectra of SiO2 is obtained. The x-ray-absorption spectra are also analyzed. A bond-orbital approximation allows a simple calculation of the refractive index (or dielectric constant) of the various allotropic forms of silica and germania. Finally, the variation in total energy and charge distribution with local distortion is analyzed in order to study structural stability, elastic rigidity, and the effective charges (including dynamic contributions) which determine the piezoelectric constants and infrared absorption intensities. © 1976 The American Physical Society.