About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Electronic structure of the Si(111)2 × 1 surface by scanning-tunneling microscopy
Abstract
The tunneling current is measured as a function of voltage, lateral position, and vertical separation between a tungsten probe tip and a Si(111)2 × 1 surface. A rich spectrum is obtained in the ratio of differential to total conductivity, revealing the structure of the surface-state bands. The magnitude of the parallel wave vector for certain surface states is determined from the decay length of the tunneling current. Real-space images of the surface states reveal a phase reversal between those states on either side of the surface-state band gap. © 1986 The American Physical Society.