About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SoCG 2016
Conference paper
Efficient algorithms to decide tightness
Abstract
Tightness is a generalisation of the notion of convexity: a space is tight if and only if it is "as convex as possible", given its topological constraints. For a simplicial complex, deciding tightness has a straightforward exponential time algorithm, but more efficient methods to decide tightness are only known in the trivial setting of triangulated surfaces. In this article, we present a new polynomial time procedure to decide tightness for triangulations of 3-manifolds - a problem which previously was thought to be hard. In addition, for the more difficult problem of deciding tightness of 4-dimensional combinatorial manifolds, we describe an algorithm that is fixed parameter tractable in the treewidth of the 1-skeletons of the vertex links. Finally, we show that simpler treewidth parameters are not viable: for all non-trivial inputs, we show that the treewidths of both the 1-skeleton and the dual graph must grow too quickly for a standard treewidth-based algorithm to remain tractable.