Publication
Molecular Simulation
Paper

Effect of substrate on the responsive behaviour of functionalised surfaces: Insights from molecular simulation

View publication

Abstract

Responsive surfaces have been suggested to enhance longevity and antifouling performance of materials in many applications from industrial coatings to tissue engineering and drug delivery. We present a molecular dynamics study investigating de-swelling and swelling of some of the most commonly used responsive materials - PEG-functionalised silica and polymer surfaces - as a function of hydration and temperature. We show that PEG chains grafted onto the hard silica substrates exhibit a dehydration-induced collapse that is far more pronounced compared to chains grafted onto the soft polyester surface. The difference between the hard and soft substrates is particularly notable at low coverage densities where the chains are sufficiently separated from one another. We also show that inter-molecular hydrogen bonding responsible for the conformational state of the tethered chains in water can be temperature controlled. It can be suggested that the hard substrates with the intermediate-to-high coverage densities of low molecular weight hydrophilic grafts may be more appropriate for anti-fouling applications due to their ability to trap greater amount of water molecules. Soft substrates may be detrimental for the efficient response of the functionalised surfaces to changes in hydration and enhancement of the surface hardness must be considered when designing responsive surfaces for solution-based applications, such as antimicrobial coatings for industry and biomedicine.

Date

30 Oct 2015

Publication

Molecular Simulation

Authors

Share