Douglas M. Gill, Jonathan E. Proesel, et al.
IEEE JSTQE
We report a broadband digital electro-optical switch, based upon a multi-stage Mach-Zehnder lattice design in silicon-on-insulator. A digital switching response is demonstrated, engineered through apodization of the coupling coefficients between stages. The digital switching behavior results in crosstalk lower than -15 dB for drive-voltage noise levels in excess of 300 mVpp, which exceeds the noise tolerance of a conventional single-stage Mach-Zehnder switch by more than six-fold. In addition, the digital design enables a larger maximum 'on'-state extinction (below -26 dB) and lower 'on'-state free-carrier-induced insertion loss (less than 0.45 dB) than that of the single-stage switch. The noise-tolerant, low-crosstalk switch can thus play a key role within CMOS-integrated reconfigurable optical networks operating under noisy on-chip conditions. ©2011 Optical Society of America.
Douglas M. Gill, Jonathan E. Proesel, et al.
IEEE JSTQE
Richard R. Grote, Brian Souhan, et al.
CLEO-SI 2014
Folkert Horst, William M. J. Green, et al.
Optics Express
Yurii A. Vlasov, Fengnian Xia, et al.
CLEO 2008