About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2009
Conference paper
Domain adaptation with latent semantic association for named entity recognition
Abstract
Domain adaptation is an important problem in named entity recognition (NER). NER classifiers usually lose accuracy in the domain transfer due to the different data distribution between the source and the target domains. The major reason for performance degrading is that each entity type often has lots of domain-specific term representations in the different domains. The existing approaches usually need an amount of labeled target domain data for tuning the original model. However, it is a labor-intensive and time-consuming task to build annotated training data set for every target domain. We present a domain adaptation method with latent semantic association (LaSA). This method effectively overcomes the data distribution difference without leveraging any labeled target domain data. LaSA model is constructed to capture latent semantic association among words from the unla-beled corpus. It groups words into a set of concepts according to the related context snippets. In the domain transfer, the original term spaces of both domains are projected to a concept space using LaSA model at first, then the original NER model is tuned based on the semantic association features. Experimental results on English and Chinese corpus show that LaSA-based domain adaptation significantly enhances the performance of NER. © 2009 Association for Computational Linguistics.