About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
This paper describes an architecture for secure and faulttolerant service replication in an asynchronous network such as the Internet, where a malicious adversary may corrupt some servers and control the network. It relies on recent protocols for randomized Byzantine agreement and for atomic broadcast, which exploit concepts from threshold cryptography. The model and its assumptions are discussed in detail and compared to related work from the last decade in the first part of this work, and an overview of the broadcast protocols in the architecture is provided. The standard approach in fault-tolerant distributed systems is to assume that at most a certain fraction of servers fails. In the second part, novel general failure patterns and corresponding protocols are introduced. They allow for realistic modeling of real-world trust assumptions, beyond (weighted) threshold models. Finally, the application of our architecture to trusted services is discussed.