Dislocation forest interactions: simulation and prediction
Abstract
Using linear elastic dislocation dynamics simulations, we show that junction formation between dislocations from various interacting slip systems can be predicted by a simple self-energy calculation. We find that this prediction is robust: dislocation curvature and external stress produce little change in the simulation results for junction formation. One away dislocation arms (under, for example, external stress) is typically slow compared to the process of making a junction. The self-energy calculation we describe gives a rule for dislocation encounters which should allow a considerable saving in computational effort, allowing one to impose correct interaction outcomes without calculating the interactions in detail. We also find that dislocations often come together under attraction without forming a junction. The resulting 'cross-linked' state provides an additional type of connection between dislocations. We include preliminary results on the persistence of junctions and cross-linked states under stress.