About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Biosensors
Paper
Development of a Quantitative Digital Urinalysis Tool for Detection of Nitrite, Protein, Creatinine, and pH
Abstract
This paper presents a cost-effective, quantitative, point-of-care solution for urinalysis screening, specifically targeting nitrite, protein, creatinine, and pH in urine samples. Detecting nitrite is crucial for the early identification of urinary tract infections (UTIs), while regularly measuring urinary protein-to-creatinine (UPC) ratios aids in managing kidney health. To address these needs, we developed a portable, transmission-based colorimeter using readily available components, controllable via a smartphone application through Bluetooth. Multiple colorimetric detection strategies for each analyte were identified and tested for sensitivity, specificity, and stability in a salt buffer, artificial urine, and human urine. The colorimeter successfully detected all analytes within their clinically relevant ranges: nitrite (6.25–200 µM), protein (2–1024 mg/dL), creatinine (2–1024 mg/dL), and pH (5.0–8.0). The introduction of quantitative protein and creatinine detection, and a calculated urinary protein-to-creatinine (UPC) ratio at the point-of-care, represents a significant advancement, allowing patients with proteinuria to monitor their condition without frequent lab visits. Furthermore, the colorimeter provides versatile data storage options, facilitating local storage on mobile devices or in the cloud. The paper further details the setup of the colorimeter’s secure connection to a cloud-based environment, and the visualization of time-series analyte measurements in a web-based dashboard.