About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE Advanced Lithography 2013
Conference paper
Deterministically isolated gratings through the directed self-assembly of block copolymers
Abstract
Pattern customization is a necessary requirement to achieve circuit-relevant patterns using block copolymer directed self-assembly (DSA), but the edge-placement error associated with customization steps after DSA is anticipated to be at the scale of the pattern features, particularly as a result of overlay error. Here we present a new self-aligned approach to the customization of line-space patterns fabricated through chemical epitaxy. A partially inorganic chemical pattern contains a prepattern with pinning lines and non-guiding "blockout" features to which the block copolymer domains are aligned. Pattern transfer results in a line-space pattern with self-aligned customizations directly determined by the prepattern. In the transferred pattern, pinning lines determine the placement of single-line gaps while blockout features determine the placement and size of perpendicular trim across lines. By using designed two-dimensional chemical patterns, this self-aligned, bidirectional customization scheme enables the fabrication of high-resolution circuit-relevant patterns with fewer trim/exposure steps. © 2013 SPIE.