About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
GLSVLSI 2007
Conference paper
Design and realization of a fault-tolerant 90nm CMOS cryptographic engine capable of performing under massive defect density
Abstract
This paper presents a new approach for assessing the reliability of nanometer-scale devices prior to fabrication and a practical reliability architecture realization. A four-layer architecture exhibiting a large immunity to permanent as well as random failures is used. Characteristics of the averaging/thresholding layer are emphasized. A complete tool based on Monte Carlo simulation for a-priori functional fault tolerance analysis was used for analysis of distinctive cases and topologies. A full chip CMOS integrated design of the 128-bit AES cryptography algorithm with multiple cores that incorporate reliability architectures is shown. Copyright 2007 ACM.