About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2012
Conference paper
Density Propagation and improved bounds on the partition function
Abstract
Given a probabilistic graphical model, its density of states is a distribution that, for any likelihood value, gives the number of configurations with that probability. We introduce a novel message-passing algorithm called Density Propagation (DP) for estimating this distribution. We show that DP is exact for tree-structured graphical models and is, in general, a strict generalization of both sum-product and max-product algorithms. Further, we use density of states and tree decomposition to introduce a new family of upper and lower bounds on the partition function. For any tree decomposition, the new upper bound based on finer-grained density of state information is provably at least as tight as previously known bounds based on convexity of the log-partition function, and strictly stronger if a general condition holds. We conclude with empirical evidence of improvement over convex relaxations and mean-field based bounds.