Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Deep clustering - joint representation learning and latent space clustering - is a well studied problem especially in computer vision and text processing under the deep learning framework. While the representation learning is generally differentiable, clustering is an inherently discrete optimization task, requiring various approximations and regularizations to fit in a standard differentiable pipeline. This leads to a somewhat disjointed representation learning and clustering. In this work, we propose a novel loss function utilizing energy-based dynamics via Associative Memories to formulate a new deep clustering method, DCAM, which ties together the representation learning and clustering aspects more intricately in a single objective. Our experiments showcase the advantage of DCAM, producing improved clustering quality for various architecture choices (convolutional, residual or fully-connected) and data modalities (images or text).
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Natalia Martinez Gil, Dhaval Patel, et al.
UAI 2024
Shubhi Asthana, Pawan Chowdhary, et al.
KDD 2021