About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACM TOIT
Paper
Cost-aware cloud bursting for enterprise applications
Abstract
The high cost of provisioning resources to meet peak application demands has led to the widespread adoption of pay-as-you-go cloud computing services to handle workload fluctuations. Some enterprises with existing IT infrastructure employ a hybrid cloud model where the enterprise uses its own private resources for the majority of its computing, but then "bursts" into the cloud when local resources are insufficient. However, current commercial tools rely heavily on the system administrator's knowledge to answer key questions such as when a cloud burst is needed and which applications must be moved to the cloud. In this article, we describe Seagull, a system designed to facilitate cloud bursting by determining which applications should be transitioned into the cloud and automating the movement process at the proper time. Seagull optimizes the bursting of applications using an optimization algorithm as well as a more efficient but approximate greedy heuristic. Seagull also optimizes the overhead of deploying applications into the cloud using an intelligent precopying mechanism that proactively replicates virtualized applications, lowering the bursting time from hours to minutes. Our evaluation shows over 100% improvement compared to solutions but produces more expensive solutions compared to ILP. However, the scalability of our greedy algorithm is dramatically better as the number of VMs increase. Our evaluation illustrates scenarios where our prototype can reduce cloud costs by more than 45% when bursting to the cloud, and that the incremental cost added by precopying applications is offset by a burst time reduction of nearly 95%.