About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SODA 2008
Conference paper
Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm
Abstract
The problem of maximizing a concave function f(x) in a simplex S can be solved approximately by a simple greedy algorithm. For given k, the algorithm can find a point x(k) on a k-dimensional face of S, such that f(x (k)) ≥ f(x *) - O(1/k). Here f(x *) is the maximum value of f in S. This algorithm and analysis were known before, and related to problems of statistics and machine learning, such as boosting, regression, and density mixture estimation. In other work, coming from computational geometry, the existence of ε-coresets was shown for the minimum enclosing ball problem, by means of a simple greedy algorithm. Similar greedy algorithms, that are special cases of the Frank-Wolfe algorithm, were described for other enclosure problems. Here these results are tied together, stronger convergence results are reviewed, and several coreset bounds are generalized or strengthened.