About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Consequences of an interface-concentrated perpendicular magnetic anisotropy in ultrathin CoFeB films used in magnetic tunnel junctions
Abstract
We examine the consequences of a strongly interface-concentrated perpendicular magnetic anisotropy (PMA) energy in CoFeB thin films currently in wide use in magnetic tunnel junctions (MTJs) for spin-torque-related memory applications. The direct consequence of such an anisotropy energy distribution, in combination with a moderate exchange coupling of the interface moment to the rest of the film, is a phenomenological appearance of a fourth-order anisotropy term as the film is viewed by ferromagnetic resonance. The presence of a fourth-order anisotropy also affects the apparent thermal activation energy of a patterned nanomagnet with such thin films, and it could lead to an apparent increase in the spin-torque switching efficiency as represented by the ratio of the thermal activation energy and the threshold switching current. However, for interface-sensitive quantities such as tunnel magnetoresistance's hard-axis behavior, as well as for spin-torque excitation processes, the specifics of such separation of interface versus film-interior moment rotation could become important.