About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry C
Paper
Computational Investigation on Hydrodeoxygenation (HDO) of Acetone to Propylene on α-MoO3 (010) Surface
Abstract
Density functional theory (DFT) calculations were performed on the multistep hydrodeoxygenation (HDO) of acetone (CH3COCH3) to propylene (CH3CHCH2) on a molybdenum oxide (α-MoO3) catalyst following an oxygen vacancy-driven pathway. First, a perfect O-terminated α-MoO3 (010) surface based on a 4 x 2 x 4 supercell is reduced by molecular hydrogen (H2) to generate a terminal oxygen (Ot) defect site. This process occurs via a dissociative chemisorption of H2 on adjacent surface oxygen atoms, followed by an H transfer to form a water molecule (H2O). Next, adsorption of CH3COCH3 on the oxygen-deficient Mo site forms an O-Mo bond and then the chemisorbed CH3COCH3 forms CH3COCH2 by transfer of an H atom to an adjacent Ot site. The surface bound hydroxyl (OH) then transfers the H atom to the immobilized O atom to form surface-bound enol, CH3CHOCH2. The next step releases CH3CHCH2 into the gas phase, while simultaneously oxidizes the surface back to a perfect O-terminated α-MoO3 (010) surface. The adsorption of H2, and the formation of a terminal oxygen (Ot) vacancy, moves the conduction band minimum (CBM) from 1.2 eV to 0 and 0.3 eV, respectively. Climbing image-nudged elastic band (CI-NEB) calculations using a Perdew-Burke-Ernzerhof (PBE) functional in combination with double-ζ valence (DZV) basis sets indicate that the dissociative adsorption of H2 is the rate-limiting step for the catalytic cycle with a barrier of 1.70 eV. Furthermore, the lower barrier for surface-mediated H transfer from primary-to-secondary carbon atom (0.63 eV) compared to that of a concerted direct H transfer to the secondary C atom with simultaneous desorption (2.02 eV) emphasizes the key role played by the surface in H transfer for effective deoxygenation. (Chemical Equation Presented).