Upol Ehsan, Elizabeth Watkins, et al.
CHI 2025
In pervasive and ubiquitous computing systems, human activity recognition has immense potential in a large number of application domains. Current activity recognition techniques (i) do not handle variations in sequence, concurrency and interleaving of complex activities; (ii) do not incorporate context; and (iii) require large amounts of training data. There is a lack of a unifying theoretical framework which exploits both domain knowledge and data-driven observations to infer complex activities. In this article, we propose, develop and validate a novel Context-Driven Activity Theory (CDAT) for recognizing complex activities. We develop a mechanism using probabilistic and Markov chain analysis to discover complex activity signatures and generate complex activity definitions. We also develop a Complex Activity Recognition (CAR) algorithm. It achieves an overall accuracy of 95.73% using extensive experimentation with real-life test data. CDAT utilizes context and links complex activities to situations, which reduces inference time by 32.5% and also reduces training data by 66%. © 2013 ACM 1073-0516/2013/12-ART32.
Upol Ehsan, Elizabeth Watkins, et al.
CHI 2025
C. Mohan
EDBT 2013
Tara N. Sainath, Bhuvana Ramabhadran, et al.
INTERSPEECH 2010
Sînziana Mazilu, José Iria
ICMLA 2011