About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JACS
Paper
Combined static and dynamic density functional study of the Ti(IV) constrained geometry catalyst (CpSiH2NH)TiR+. 1. Resting states and chain propagation
Abstract
The resting state structure of the metallocene-alkyl cation, the coordination of the olefin to the preferred resting state structure, and the insertion process of the Ti-constrained geometry catalyst (CpSiH2NH)TiR+ have been studied with density functional theory. A combined static and dynamic approach has been utilized whereby 'static' calculations of the stationary points on the potential surface are meshed with first principles Car-Parrinello molecular dynamics simulations. The first molecular dynamics simulation specifically addressing the structure of a metallocene-alkyl cation is presented showing rapid interconversion between γ- and β-agostic conformations. Complementary static calculations show a small energetic preference for a γ-agostic resting state. Coordination of the olefin to the Ti-alkyl resting state is likely to result in the formation of a β-agostic π-complex which is highly favored energetically over other π-complexes that may initially form. The whole propagation cycle was studied from π-complex to subsequent π-complex. The propagation barrier corresponds to the insertion process which was calculated to have a free energy barrier of ΔG(paragraph)=24.3 kJ/mol at 300 K. The initial β-agostic interactions which stabilize the π-complex are replaced by α-agostic bonds which stabilize the insertion transition state. A study of the back-side insertion process reveals that it may be competitive with the front-side insertion process.