About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TSP
Paper
Collaborative kalman filtering for dynamic matrix factorization
Abstract
We propose a new algorithm for estimation, prediction, and recommendation named the collaborative Kalman filter. Suited for use in collaborative filtering settings encountered in recommendation systems with significant temporal dynamics in user preferences, the approach extends probabilistic matrix factorization in time through a state-space model. This leads to an estimation procedure with parallel Kalman filters and smoothers coupled through item factors. Learning of global parameters uses the expectation-maximization algorithm. The method is compared to existing techniques and performs favorably on both generated data and real-world movie recommendation data. © 2014 IEEE.