About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage
Abstract
A biexciton in a semiconductor quantum dot is a source of polarization-entangled photons with high potential for implementation in scalable systems. Several approaches for nonresonant, resonant, and quasiresonant biexciton preparation exist, but all have their own disadvantages; for instance, low fidelity, timing jitter, incoherence, or sensitivity to experimental parameters. We demonstrate a coherent and robust technique to generate a biexciton in an InGaAs quantum dot with a fidelity close to 1. The main concept is the application of rapid adiabatic passage to the ground-state-exciton-biexciton system. We reinforce our experimental results with simulations which include a microscopic coupling to phonons.