Publication
MRS Spring Meeting 2006
Conference paper

Characterization of HfO2/Si exposed to water vapor at room temperature

View publication

Abstract

HfO2-based materials are the leading candidates to replace SiO2 as the gate dielectric in Si-based metal-oxide-semiconductor filed-effect transistors. The ubiquitous presence of water vapor in the environments to which the dielectric films are exposed (e.g. in environmental air) leads to questions about how water could affect the properties of the dielectric/Si structures. In order to investigate this topic, HfO 2/SiO2/Si(001) thin film structures were exposed at room temperature to water vapor isotopically enriched in 2H and 18O followed by quantification and profiling of these nuclides by nuclear reaction analysis. We showed i) the formation of strongly bonded hydroxyls at the HfO2 surface; ii) room temperature migration of oxygen and water-derived oxygenous species through the HfO2 films, indicating that HfO2 is a weak diffusion barrier for these oxidizing species; HfO2 hydrogenous, water-derived species attachment to the SiO2 interlayer, resulting in detrimental hydrogenous defects therein. Consequences of these results to HfO2-based metal-oxide-semiconductor devices are discussed. © 2006 Materials Research Society.