About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Cement and Concrete Research
Paper
Bayesian design of concrete with amortized Gaussian processes and multi-objective optimization
Abstract
Here, we present a computational framework, combining machine learning models with inverse optimization, which can accelerate and optimize concrete mix design with respect to climate impact and/or cost. Our approach leverages a novel amortized Gaussian process (GP) model trained on a large industry dataset to predict concrete strength based on mix proportions. The resulting GP model has an R2 value, RMSE, and MAPE of ∼0.88, ∼909 psi (6.3 MPa), and ∼10.8 %, respectively. We integrated the GP model with an inverse optimization scheme to predict optimal mix designs that minimize cost and/or climate impact. The results show that this integrated framework can generate reasonable concrete mixes that offer up to ∼30 % and ∼60 % reductions in cost and climate impact, respectively, compared with industry mixes with similar 28-day strength. This study highlights the potential environmental and economic benefits of data-driven approaches to designing and optimizing concrete mixes.