About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE/ACM TON
Paper
Balancing exposed and hidden nodes in linear wireless networks
Abstract
Wireless networks equipped with the CSMA protocol are subject to collisions due to interference. For a given interference range, we investigate the tradeoff between collisions (hidden nodes) and unused capacity (exposed nodes). We show that the sensing range that maximizes throughput critically depends on the activation rate of nodes. For infinite line networks, we prove the existence of a threshold: When the activation rate is below this threshold, the optimal sensing range is small (to maximize spatial reuse). When the activation rate is above the threshold, the optimal sensing range is just large enough to preclude all collisions. Simulations suggest that this threshold policy extends to more complex linear and nonlinear topologies.