About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP-CoNLL 2007
Conference paper
Automatic identification of important segments and expressions for mining of business-oriented conversations at contact centers
Abstract
Textual records of business-oriented conversations between customers and agents need to be analyzed properly to acquire useful business insights that improve productivity. For such an analysis, it is critical to identify appropriate textual segments and expressions to focus on, especially when the textual data consists of complete transcripts, which are often lengthy and redundant. In this paper, we propose a method to identify important segments from the conversations by looking for changes in the accuracy of a categorizer designed to separate different business outcomes. We extract effective expressions from the important segments to define various viewpoints. In text mining a viewpoint defines the important associations between key entities and it is crucial that the correct viewpoints are identified. We show the effectiveness of the method by using real datasets from a car rental service center. © 2007 Association for Computational Linguistics.