About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2011
Conference paper
Automatic Group Sparse Coding
Abstract
Sparse Coding (SC), which models the data vectors as sparse linear combinations over basis vectors (i.e., dictionary), has been widely applied in machine learning, signal processing and neuroscience. Recently, one specific SC technique, Group Sparse Coding (GSC), has been proposed to learn a common dictionary over multiple different groups of data, where the data groups are assumed to be pre-defined. In practice, this may not always be the case. In this paper, we propose Automatic Group Sparse Coding (AutoGSC), which can (1) discover the hidden data groups; (2) learn a common dictionary over different data groups; and (3) learn an individual dictionary for each data group. Finally, we conduct experiments on both synthetic and real world data sets to demonstrate the effectiveness of AutoGSC, and compare it with traditional sparse coding and Nonnegative Matrix Factorization (NMF) methods.