About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
In numerous network analysis tasks, feature representation plays an imperative role. Due to the intrinsic nature of networks being discrete, enormous challenges are imposed on their effective usage. There has been a significant amount of attention on network feature learning in recent times that has the potential of mapping discrete features into a continuous feature space. The methods, however, lack preserving the structural information owing to the utilization of random negative sampling during the training phase. The ability to effectively join attribute information to embedding feature space is also compromised. To address the shortcomings identified, a novel attribute force-based graph (AGForce) learning model is proposed that keeps the structural information intact along with adaptively joining attribute information to the node’s features. To demonstrate the effectiveness of the proposed framework, comprehensive experiments on benchmark datasets are performed. AGForce based on the spring-electrical model extends opportunities to simulate node interaction for graph learning.