About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KDD 2020
Conference paper
Attention based Multi-Modal New Product Sales Time-series Forecasting
Abstract
Trend driven retail industries such as fashion, launch substantial new products every season. In such a scenario, an accurate demand forecast for these newly launched products is vital for efficient downstream supply chain planning like assortment planning and stock allocation. While classical time-series forecasting algorithms can be used for existing products to forecast the sales, new products do not have any historical time-series data to base the forecast on. In this paper, we propose and empirically evaluate several novel attention-based multi-modal encoder-decoder models to forecast the sales for a new product purely based on product images, any available product attributes and also external factors like holidays, events, weather, and discount. We experimentally validate our approaches on a large fashion dataset and report the improvements in achieved accuracy and enhanced model interpretability as compared to existing k-nearest neighbor based baseline approaches.