About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics A: Materials Science and Processing
Paper
Atomic forcemicroscope-based data storage: Track servo and wear study
Abstract
The high spatial resolution of the atomic force microscope (AFM) has motivated recent efforts to apply the technique to high-density data storage. However, little attention has been given to satisfying the other necessary attributes required of any new data storage technology. Using a system based on reading topographic data features on a rotating disk with a high-frequency piezoresistive cantilever, we address several of these issues. A timing-based control method for data tracking is demonstrated and shown to maintain the radial tip position to within a standard deviation of 31 nm. While maintaining the tip position under both load and tracking control with a disk velocity of 3 cm=s, 200 nm diameter marks are read continuously for over 145 h without any significant change in signal amplitude. This represents a tip travel distance of 16 km, and each bit was read over 500 000 times. © 1998 Springer-Verlag.