About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Mechanics, Transactions ASME
Paper
Approximate methods for time-dependent gas-film lubrication problems
Abstract
The pressure in a thin film of gas undergoing laminar, isothermal flow is given by the so-called Reynolds equation, a nonlinear, second-order, partial differential equation of parabolic type. The Reynolds equation plays a central role in the theory of gas-film lubrication. This paper is devoted to a study of numerical procedures based upon finite differences for obtaining approximate solutions. A number of explicit, semi-explicit, and implicit difference schemes are examined from the point of view of truncation error, stability, and computational efficiency. © 1963 by ASME.