Publication
PerCom Workshops 2019
Conference paper

Anatomy and Deployment of Robust AI-Centric Indoor Positioning System

View publication

Abstract

Indoor Positioning Systems are gaining market momentum, mainly due to the significant reduction of sensor cost (on smartphones or standalone) and leveraging standardization of related technology. Among various alternatives for accurate and cost-effective Indoor Positioning System, positioning based on the Magnetic Field has proven popular, as it does not require specialized infrastructure. Related experimental results have demonstrated good positioning accuracy. However, when transitioned to production deployments, these systems exhibit serious drawbacks to make them practical: a) accuracy fluctuates significantly across smartphone models and configurations and b) costly continuous manual fingerprinting of the area is required. The developed Indoor Positioning System Copernicus is a self-learning, adaptive system that is shown to exhibit improved accuracy across different smartphone models. Copernicus leverages a minimal deployment of Bluetooth Low Energy Beacons to infer the trips of users, learn and eventually build tailored Magnetic Maps for every smartphone model for the specific indoor area. In a practical deployment, after each trip execution by the users we can observe an increase in the accuracy of positioning.

Date

Publication

PerCom Workshops 2019

Authors

Share