About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Pattern Analysis and Machine Intelligence
Paper
An off-line cursive handwriting recognition system
Abstract
This paper describes a complete system for the recognition of off-line handwriting. Preprocessing techniques are described, including segmentation and normalization of word images to give invariance to scale, slant, slope and stroke thickness. Representation of the image is discussed and the skeleton and stroke features used are described. A recurrent neural network is used to estimate probabilities for the characters represented in the skeleton. The operation of the hidden Markov model that calculates the best word in the lexicon is also described. Issues of vocabulary choice, rejection, and out-of-vocabulary word recognition are discussed. © 1998 IEEE.