About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICPR 2006
Conference paper
An interweaved HMM/DTW approach to robust time series clustering
Abstract
We introduce an approach for model-based sequence clustering that addresses several drawbacks of existing algorithms. The approach uses a combination of Hidden Markov Models (HMMs) for sequence estimation and Dynamic Time Warping (DTW) for hierarchical clustering, with interlocking steps of model selection, estimation and sequence grouping. We demonstrate experimentally that the algorithm can effectively handle sequences of widely varying lengths, unbalanced cluster sizes, as well as outliers. © 2006 IEEE.