About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NVMTS 2017
Conference paper
An efficient synaptic architecture for artificial neural networks
Abstract
Artificial neural networks (ANN) have revolutionized the field of machine learning by providing impressive human-like performance in solving real-world tasks in computer vision, speech recognition, or complex strategic games. There is a significant interest in developing non-von Neumann coprocessors for the training of ANNs, where resistive memory devices serve as synaptic elements. However, interdevice variability, limited dynamic range and resolution, nonlinearity and asymmetric switching characteristics pose important technical challenges. We investigate the use of multi-memristive synapses to overcome these challenges. We present a detailed experimental characterization of conductance changes using a phase-change memory chip fabricated in the 90nm technology node and show how multi-memrisive synapses can address the limitations of memristive devices for synaptic implementations. Simulations show that an ANN trained with backpropagation can achieve competitive classification accuracies using such a scheme.