About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Optimization Methods and Software
Paper
An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems
Abstract
Our interest lies in solving sum of squares (SOS) relaxations of large-scale unconstrained polynomial optimization problems. Because interior-point methods for solving these problems are severely limited by the large-scale, we are motivated to explore efficient implementations of an accelerated first-order method to solve this class of problems. By exploiting special structural properties of this problem class, we greatly reduce the computational cost of the first-order method at each iteration. We report promising computational results as well as a curious observation about the behaviour of the first-order method for the SOS relaxations of the unconstrained polynomial optimization problem. © 2013 Copyright Taylor and Francis Group, LLC.