About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
European Physical Journal E
Paper
AI-driven prediction of SARS-CoV-2 variant binding trends from atomistic simulations
Abstract
Abstract: We present a novel technique to predict binding affinity trends between two molecules from atomistic molecular dynamics simulations. The technique uses a neural network algorithm applied to a series of images encoding the distance between two molecules in time. We demonstrate that our algorithm is capable of separating with high accuracy non-hydrophobic mutations with low binding affinity from those with high binding affinity. Moreover, we show high accuracy in prediction using a small subset of the simulation, therefore requiring a much shorter simulation time. We apply our algorithm to the binding between several variants of the SARS-CoV-2 spike protein and the human receptor ACE2. Graphic abstract: [Figure not available: see fulltext.]