About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2015
Conference paper
Aggregate demand-based real-time pricing mechanism for the smart grid: A game-theoretic analysis
Abstract
Managing peak energy demand is a critical problem for energy utilities. The energy costs for the peak periods form a major component of their overall costs. Real-time pricing mechanisms have been explored as a means of flattening the demand curve and reducing the energy costs. In this paper, we examine a model of ex-post real-time pricing mechanism that can be used by the utilities for this purpose. In particular, we study a convex piece-wise linear cost function that modulates the price of energy based on the aggregate demand of the utility. We provide a game-theoretic analysis of the mechanism by constructing a non-cooperative game among the consumers of a utility wherein the cost to each consumer is decided by the pricing mechanism. We formally characterize the Nash equilibrium and other properties for two settings: (i) consumers have full flexibility in shifting their demand, and (ii) consumers can shift only a fraction of their demand at any time to another time.